Running Cloudy in parallel

Peter van Hoof
Royal Observatory of Belgium

Cloudy Workshop
Lexington, August 2025

Running Cloudy in parallel (1)

There are two commands in Cloudy that are parallelized:
« The optimizer
e The grid command

Both commands generate lots of individual models that can be run
independently and are therefore very easy to parallelize.

First | will briefly introduce both commands.

The optimizer is typically used to determine model parameters that best
reproduce a set of observables (typically line ratios from an observed
spectrum plus a few other observables). It works by minimizing a X2

Cloudy has a built-in routine called PHYMIR that can minimize the x?
function running 2N models in parallel, where N is the number of model
parameters you want to optimize.

The PHYMIR algorithm was specially designed for Cloudy. Also the x? value
has a heuristic definition that helps create meaningful fits.

Running Cloudy in parallel

Jul 24, 24 18:28 optimize.in Page 1/2 Jul 24, 24 18:28 optimize.in Page 2/2

title NGC 6720 optimize lines

sphere c 2 1335 6.882

constant density TOTL 1548 30.28

cosmic rays background He 2 1640 138.2

table star rauch 5.130187 LOG wvary TOTL 1665 12.32

optimize increment 0.1 TOTL 1750 10.39

LUMINOSITY 35.982113 LOG range -7.999566 6.866524 vary TOTL 1%0% 155.6

optimize increment 0.2 TOTL 2326

RADIUS= 17.157808 LOG vary Ne 4 2424

optimize increment 0.2 o II 2471 7.319

optimize range 17 17.3 # uncertainties in optical lines assume a l-sigma unc of 0.03 in F(lambda)
HDEM 2.610496 wvary He 1 3614 0.280

optimize increment 0.2 3683 0.658

abundances planetary no grains 3687 0.758

ELEMENT HELI ABUNDANCE 10.979260 12 LOG vary 3692 0.890

optimize increment 0.2 3697 1.072

ELEMENT CARB ABUNDANCE 8.331850 12 LOG vary 3704 1.229

optimize increment 0.2 3712 1.622

ELEMENT NITR ABUNDANCE 7,980493 12 LOG vary 3726 246.5

optimize increment 0.2 3729 257.7

ELEMENT OXYG ABUNDANCE 8.684%02 12 LOG vary 3734 2.193

optimize increment 0.2 3750 3.078

ELEMENT NEON ABUNDANCE 8.041230 12 LOG wvary 2771 3.880

optimize increment 0.2 3758 5.214

ELEMENT SULF ABUNDANCE 6.508011 12 LOG vary 3820 1.251

optimize increment 0.2 3835 7.328

ELEMENT CHLO ABUNDANCE 5.029389 12 LOG vary 3869 136.8

optimize increment 0.2 35924 0.188

ELEMENT ARGO ABUNDANCE 6.264313 12 LOG wvary 3968 41.98

optimize increment 0.2 3870 15.08

ELEMENT IRON ABUNDANCE 5.451066 12 LOG vary 4026 2,807

optimize increment 0.2 4070 3.753

GRAIN ABUND=0.208935 LOG ISM silicate vary 4078 1.151

optimize increment 0.2 4102 27.07

print line flux seen at earth 4144 0.377 0.08

distance 740 linear parsec 4169 0.096 0.

atom H-like levels 20 element hydrogen 4340 48.56

atom H-like levels 15 element helium 4363 8.027

stop eden 0.1 linear He 1 4388 0.621

stop zone 2000 He 1 4438 0.083 0.38

normalize to "H 1" 4861 scale factor 100 He 1 4471 5.005

iterate He 2 4542 0.704

optimize phymir 14 likely misidentified or blended...

optimize tolerance 0.01 Ar 5 4626 0.010

optimize iterations 5000 ... lines omitted ...

3 51.80m 2.63e-17*100./8.32e-18+%1.14*0.631/0.99% 0.05
3 57.21m 7.90e-18*100./8.32e-18*1.14*%0.631/0.999 0.05
the FIR [0 I] lines may be formed predeminantly in the cold condensations
o 1 632.17m 5.33e-18*100./8.32e-18*1.14*0.631/0.99% 0.05
3 88.33m 1.82e-17*100./8.32e-18*1.14*0.631/0.299 0.05
2 121.7m 4.12e-19*100./8.32e-18*1.14*0.631 0.05
0 1 145.5m 1.81e-19*100./8.32e-18*1.14*0.631 0.05
2 157.6m 7.01e-19*100./8.32e-18*%1.14*0.631 0.05

IR T O O I T I
[N R NNy I N .

i1
o o

Q= Z 0=+ 0=k

[l
=1
s}

optimize continuum £lux at 43. micron 1.l4*4e-18 W/sgem/micron 0.20
optimize continuum £lux at 115. micron 1.14*5e-19 W/sgem/micron 0.20
optimize radio continuum flux 4850 MHz 360 mJy 0.10

optimize radio continuum flux 1400 MHz 440 mJy 0.10

optimize angular diameter 76" 0.10

Note that this model will not run in the current version of Cloudy!

Running Cloudy in parallel (3)

The grid command is often used to create plots of a predicted quantity
(e.qg., a line ratio) as a function of one or more variables (typical examples
would be the gas density, temperature, or ionization parameter).

Typical applications would be to create contour plots or BPT diagrams. The
information you want to plot is often extracted from save commands.

All models in the grid are independent, so for large grids you can achieve
high levels of parallelization.

Jul 20, 23 5:04 nc_grid_line_ratios.in

a grid run

commands controlling co
blackbody 4ed K
ionization parameter -2

commands for density & abundances
these are to speed up the calculation, only do H, O, and Ne
init "honly.ini"
element oxygen on
element neon on
sulphur on
oxygen ionization 1 1 1
neon ionization 1 1 1
sulphur ionization 1 1 1
vary the hydrogen density
hden 4 vary
grid 2 6.1 1 sequential
#

other commands for details

these are constant temperature models, vary T
constant temperature 4 vary

grid 4000 17000 3000 linear

stop zone 1

commands controlling output

save overview "func_grid_line_ratios.ovr"

save monitors "func_grid_line_ratios.asr"

save performance "func_grid line_ratios.per"

save line list "func_g: _line_ratios.pun" "func_grid_line_ratios.dat" ratio no hash
save grid "func_grid_line_ratios.grd"

#

commands giving (lack of) assert

monitor nothing 0

func_grid_line_line_ratios.in
class function

This uses the grid command to compute line ratics for a wide range of
density and temperature. The ionization is set to a uniform value and
only a few elements are included. this makes the calculation faster
and prevents recombination [0 III] 4363 from becoming important (there
is no 0+3).

These are the line ratios mentioned as limits in the Johnstone et al.
Spitzer cool flow filament paper (2007).

Running Cloudy in parallel (4)

On the previous slides we have seen that both optimizer and grid runs can
be parallelized. This can substantially reduce the run time at the expense
of increased memory use.

There are two methods in use for parallelization:
1) Based on the fork() system call
2) Based on the Message Passing Interface (MPI)

Both methods have advantages and disadvantages which will be discussed
on the next slide. It is also possible to run both commands sequentially on
a single CPU, but this can take a long time (though it will reduce the
memory load)!

All these methods should give essentially identical results. If they don't,
you can report that as a bug.

Running Cloudy in parallel (5)

How do you choose which method of parallelization to use?

The fork() method works out of the box. It will be automatically
compiled into the code on all systems that support it in a default

compilation. This includes Linux and other UNIX systems, Mac OS X,
and Cygwin. So this is a hassle-free solution.

The downside is that you can only fork new processes on a single
machine, i.e. you are limited to a single computer or node.

So using the default fork()-based method of parallelization is ideal for
running small/medium-sized grids (or optimizations with few free
parameters) on your laptop or desktop or even a single compute server.

The big advantage of MPI is that it allows you to use cores on multiple
nodes of an HPC machine. This allows you to use a virtually unlimited
number of cores (well, as many as the admins allow you to use...)

The downside of MPI is that it needs external support scripts and
libraries. The compilation and startup of MPI codes is not standardized
and can differ from one system to another. You may need to load

specific modules, or set search paths to find the executables and
libraries.

Running Cloudy in parallel (6)

So for very CPU-intensive applications (large grids or optimizations with
lots of free parameters) it can be advantageous to use MPI on a suitable
HPC cluster.

In a default compilation, Cloudy will run the optimizer and grid commands
in parallel on systems that support the fork() system call and where the
number of cores can be determined. By default it will use all threads
(except on MacOS, where it will ignore hyperthreads (Intel) and efficiency
cores (ARM, will be in C25.00)). The number of threads to use can be
changed on the optimize phymir and grid commands.

How do you choose the number of cores?

 Optimizer runs can use no more than 2xN cores simultaneously, where
N is the number of parameters that are varied by the optimizer. So
ideally you would use 2xN cores, but you could also use N cores, or
ceil((2xN)/3), or some other small fraction of 2xN. This choice assures
that the threads are well-balanced.

e Grid runs will compute NixNxx... independent models, where N; is the
number of grid points in the first variable, N, is the same for the second
variable, etc. For good load balancing you can choose an integer
divisor of this total number of models, but this is not strictly necessary.

Running Cloudy in parallel (7)

To compile Cloudy for an MPI run requires several steps.

MPI typically uses a wrapper around the compiler, called something like
mpiCC, but alternative names are mpicxx or mpic++. You may need to
load a module to find this.

You need to figure out which compiler the script wraps around. You can
do this by typing “mpiCC --version”. Ty pically this will show that it is
either g++ or icc (the Intel compiler).

You need to compile Cloudy in one of the sys xxx subdirectories. If
mpiCC wraps around g++, use the sys mpi_gcc directory. If mpiCC
wraps around icc, use the sys mpi_icc directory. In these directories
you can compile as you normally would.

To run the MPI executable, you typically need to use the mpirun
executable, i.e. “mpirun /path/to/cloudy.exe -r script”. A batch system
will communicate to mpirun how many ranks to start on which nodes.
Outside of a batch system, other methods are needed, like using the
“-np” flag (for running on the local machine) or using a hostfile (for
running on remote machines). See the man page for more info.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

