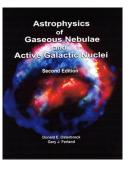


Simultaneous solution of

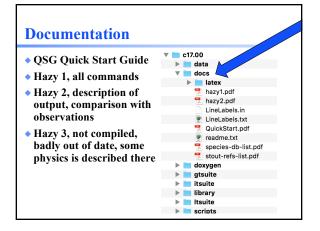
Gas ionization

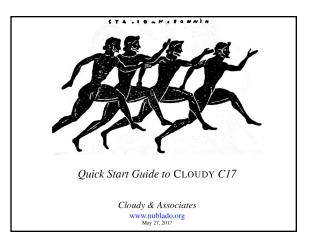
- From ionization balance equations
- Chemistry
- Large network based on UMIST
- Gas kinetic temperature – Heating and cooling
- Level populations and emission
- Grain physics
- Charging, CX, photoejection, quantum heating
- The observed spectrum
 - Radiative transport


On the web

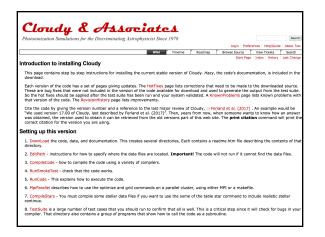
http://cloud9.pa.uky.edu/~gary/cloudy/CloudySummerSchool

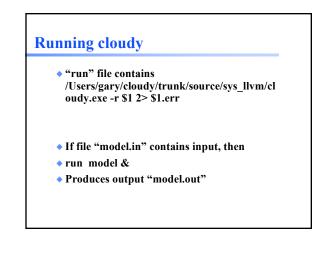
- Agenda for the workshop
 Includes copies of presentations
- Participant interests
- ftp site with documentation, and examples

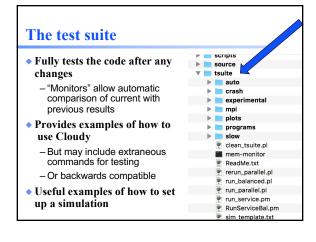

Osterbrock & Ferland Astrophysics of Gaseous Nebulae

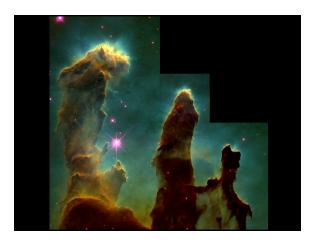

- There are three versions, this is the 3rd
 Don called this on AGN3
- Any version is OK
- PDFs of some sections are in the docs folder of the ftp site

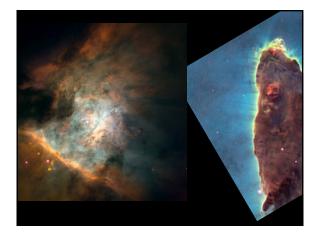
Cloudy version C17

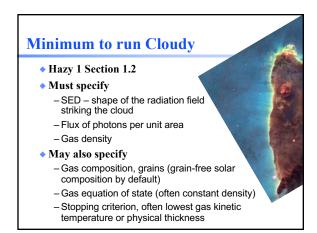

- We set this up, ran a model, and created plots, as our homework last week
- PDFs of the Quick Start Guide, and the first two volumes of Hazy, its documentation, are in the docs folder of the ftp site
- Copies of the last three major reviews of Cloudy are also in the docs folder of the ftp site

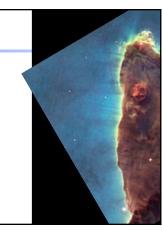

Photoionization Simulations for the Discriminating Astrophysici	st Since	1978				Search
					rences Help/Guide	
	Wiki	Timeline	Roadmap	Browse Source	View Tickets Index History	Search Last Change
Velcome to the Cloudy home page!				start Page	TINER HISTORY	case change
Cloudy is a spectral synthesis code designed to simulate conditions general use under an open source License.	in inter	stellar matte	r under a bro	ad range of conditi	ons. It is provid	led for
Please post question or problems on the Cloudy addiscussion board	. Updat	es to Cloudy	will be annou	nced on that board	t.	
C17.00, is released. This paper discusses what is new. Follow t straight to the DownloadLinks page to obtain it. NewC17 explains in				wnloading and inst	talling the code	, or go
Cloudy BWorkshops Summer 2017						
Queen's University Belfast: 31 July - 4 August 2017 We are p School of Mathematics and Physics at Queen's University Belfast. F						
The Guillermo Haro advanced school on modelling the ionized u Electronica, Tonantzintia, Puebla, Mexico) from July 3rd to 14th, 2d approach to the modelling of ionized gas in different environments, researchers, mainly PhD Students and postdocs. The first week will further into the topics introduced during the first week, with lecture Kentucky), Christophe Monseet (JA-UIAM), Hagal Netzer (Tel Avv webbate has further details and instructions for paphying for the 2	017. The from A consist es by Gla Univers	school will p GB stars to a of a Cloudy oria Delgado ity), Manuel	orovide a com active galactic workshop led Inglada (IA-U Pelmbert (IA-	prehensive, state- nuclei, to an audie by Gary Ferland. T JNAM), Gary Ferlar	of-the-art, hand ence of up to 40 The second wee nd (University of	is-on) young k will delve if
Setting started with Cloudy						
The VideoPage has a video showing how to build and run Cloudy.						
StepByStep instructions for downloading and installing the release	version,	and running	the code on	various platforms.		
Or you can go straight to the DownloadLinks page.						
StellarAtmospheres in Cloudy are now very flexible. They are descr	ibed on	this web site	e rather than i	n Hazy.		
KnownProblems are described on this page.						
HotFixes are small corrections to the source that fix problems disco	wered a	fter the curn	ent stable ver	sion was released.		
			1.44.00	://www.r	l.1	

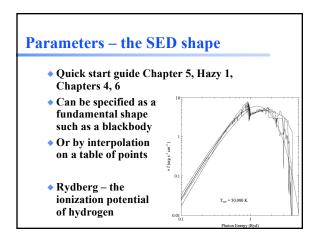






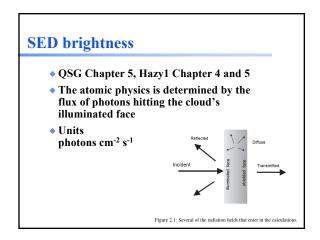

Conversations Decision Photos Files Decision About More V					
Topics Messages					
Calculated emissivities to Sorry, correction: the grid line is grid are too low. I am attempting to attact gardnerc413 * 2 posts - 8:19 PM	8000.40000 1000 linear We seem to get good results, but the magnitudes h a .png				
Introducing Gaussian noise to Section 3.3 of the 2013 release pape to some parameters. I'd like to apply t_i_cooper * 1 post * 2:56 PM	er states that the code includes the ability to randomly add Gaussian noise				
Level populations Dear Prof. Ferland, Many thanks for Tamara. ermolaeva.gao * 4 posts - Jun 13	the reply. I'll look forward to the next version Cloudy. Best regards,				
Simulation warning: Transfer Thank you again for the explanation vital.fernandez · 3 posts - Jun 9					
Sill is not ionized by increasin Dear all, I have constructed a series = -5 vary grid range from -5 to 2 ste	of Cloudy models using the following script: hden 2.0 ionization parameter				





Let's model a ...

- Relatively dense, $n_{\rm H} = 10^4 \, {\rm cm}^{-3}$
- ISM cloud
- Ionized by an O6 star

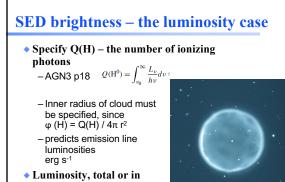


Calculated Strömgren radii as function of spectral types spheres				AGN3		
Spectral type	<i>T</i> 	M _V	log Q(H ⁰) (photons/s)	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$r_1 (pc)$ $n_e = n_p$ $= 1 cm^{-3}$
03 V	51,200	-5.78	49.87	49.18	6.26	122
04 V	48,700	-5.55	49.70	48.99	6.09	107
O4.5 V	47,400	-5.44	49.61	48.90	6.00	100
05 V	46,100	-5.33	49.53	48.81	5.92	94
05.5 V	44,800	-5.22	49.43	48.72	5.82	87
06 V	43,600	-5.11	49.34	48.61	5.73	81
06.5 V	42,300	-4.99	49.23	48.49	5.62	75
07 V	41,000	-4.88	49.12	48.34	5.51	69
07.5 V	39,700	-4.77	49.00	48.16	5.39	63
08 V	38,400	-4.66	48.87	47.92	5.26	57
08.5 V	37,200	-4.55	48.72	47.63	5.11	51
09 V	35,900	-4.43	48.56	47.25	4.95	45
09.5 V	34,600	-4.32	48.38	46.77	4.77	39
B0 V	33,300	-4.21	48.16	46.23	4.55	33
B0.5 V	32,000	-4.10	47.90	45.69	4.29	27
O3 III	50,960	-6.09	49.99	49.30	6.38	134
B0.5 III	30,200	-5.31	48.27	45.86	4.66	36
O3 Ia	50,700	-6.4	50.11	49.41	6.50	147
O9.5 Ia	31,200	-6.5	49.17	47.17	5.56	71

Command deck to do this	
 Blackbody 4.36e4 K 	

Commands – Hazy1 Chap 3

- Free format keywords and numbers
- Commands end with empty line or *****
- Many numbers are logs, check Hazy1 carefully



SED brightness

- QSG Chapter 5, Hazy1 Chapter 4 and 5
- Luminosity case
 - Specify total photon luminosity
 - Predict line luminosities

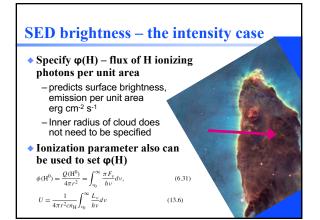
Intensity case

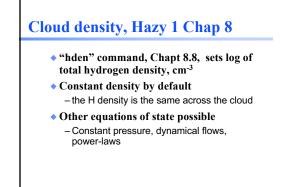
- In a resolved source, often work with surface brightness, or line intensity
- Specify flux of photons striking cloud, predict emission per unit volume

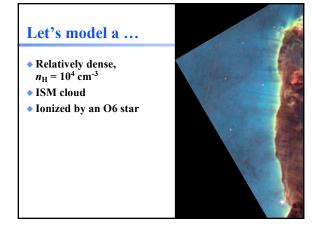
H-ionizing radiation, can be set instead

Calculated Strömgren radii as function of spectral types spheres				AGN3		
Spectral type	<i>T</i> * (K)	M _V	log Q(H ⁰) (photons/s)	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$r_1 (pc)$ $n_e = n_p$ $= 1 cm^{-3}$
03 V	51,200	-5.78	49.87	49.18	6.26	122
04 V	48,700	-5.55	49.70	48.99	6.09	107
O4.5 V	47,400	-5.44	49.61	48.90	6.00	100
05 V	46,100	-5.33	49.53	48.81	5.92	94
O5.5 V	44,800	-5.22	49.43	48.72	5.82	87
06 V	43,600	-5.11	49.34	48.61	5.73	81
O6.5 V	42,300	-4.99	49.23	48.49	5.62	75
07 V	41,000	-4.88	49.12	48.34	5.51	69
07.5 V	39,700	-4.77	49.00	48.16	5.39	63
08 V	38,400	-4.66	48.87	47.92	5.26	57
08.5 V	37,200	-4.55	48.72	47.63	5.11	51
09 V	35,900	-4.43	48.56	47.25	4.95	45
09.5 V	34,600	-4.32	48.38	46.77	4.77	39
B0 V	33,300	-4.21	48.16	46.23	4.55	33
B0.5 V	32,000	-4.10	47.90	45.69	4.29	27
O3 III	50,960	-6.09	49.99	49.30	6.38	134
B0.5 III	30,200	-5.31	48.27	45.86	4.66	36
O3 Ia	50,700	-6.4	50.11	49.41	6.50	147
O9.5 Ia	31,200	-6.5	49.17	47.17	5.56	71

Command deck to do this

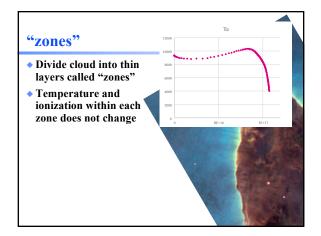

- Blackbody 4.36e4 K
- Q(H) 49.34

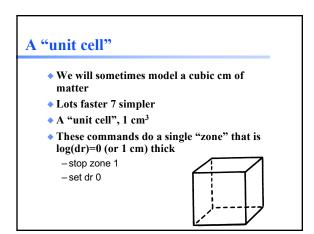

Radius command, Chap 9.10


- If luminosity is set then the radius, the separation between the star and the illuminated face of the cloud, must also be specified
- Radius command
- -log radius in cm by default
- Linear, or parsecs, can be used by setting optional keywords
- Let's put our cloud 1016 cm from the star

Command deck to do this

- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- We will try different radii later





Command deck to do this

- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- Hden 4

Command deck to do this

- Blackbody 4.3e4 K
- ◆ Q(H) 49.34
- Radius 16
- Hden 4
- stop zone 1
- 🔷 set dr 0

Composition, Hazy 1 Chap 7

- Solar, no grains, by default
- Other standard mixtures possible,
- Stored in data / abundances
- The composition used is reported at the top of the main output

H: 0.0000 Me: -1.0232 Li:-10.27676 B:-10.0586 C:-3.5229 M:-4.1540 D:-3.379 Me:-4.2218 Me:-6.5229 Mg:-5.5229 Ai:-6.5093 Si:-5.3090 D:-10.7000 Ai:-5.5229 A:-5.5229 K:-5.5229 K:-5.5229 K:-5.5229 K:-5.5229 K:-7.6990 Ti:-9.2366 V:-10.0000 Cr:-8.0000 Mn:-7.6383 Fe:-5.5229 Ni:-7.0000 Cu:-8.0239 Zn:-7.6990 Grain Chemical Composition C:-3.0239 D:-3.0259 D:-3.0250 Mg:-4.5547 Fe:-4.5547 Fe:-4.5547

Let's model a ...

- Relatively dense, $n_{\rm H} = 10^4 \, {\rm cm}^{-3}$
- ISM cloud
- Ionized by an O6 star
- The ISM is dusty, and some elements are depleted by condensation onto dust
- Abundances ISM – Chapt 7.4.3

Command deck to do this

- Blackbody 4.36e4 K
- Q(H) 49.34
- Radius 16
- Hden 4
- stop zone 1
- set dr 0
- Abundances ISM

Background cosmic rays

- Interstellar chemistry requires a source of ionization to work
- The chemistry network will fail in unphysical ways if ionization is not present
- Galactic background cosmic rays provide this ionization in nature
- Cosmic rays background, Chapt 11.6.1

Command deck to do this

- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- Hden 4
- stop zone 1
- set dr 0
- Abundances ISM
- Cosmic rays background

"Save" output

- Requested with various "save" commands - Hazy 1 Section 16.35 and later
- This is the main way I extract results
- Keyword to specify what to save
- Filename to set where to save it
- Set save prefix "name" - Prepends "name" to all save files

Save files

• Save emitted continuum "filename"

- Photon energy is Rydberg by default
- Change to microns with keyword units
- Units microns
- Save overview
 - Useful information such as gas temperature and ionization
- Save element name
 - Saves ionization of element specified

Command deck to do this

- Set save prefix "HII"
- Blackbody 4.3e4 K
- -Q(H) 49.34
- Radius 16
- -Hden 4
- -stop zone 1
- -set dr 0
- Abundances ISM
- Cosmic rays background
- Save overview ".ovr" last no hash
- Save element hydrogen ".hyd" last no hash
- Save emitted continuum ".econ" units microns

The "main output"

- The *.out file created when code is executed -QSG 7.1 & Hazy 2 Chapter 1
- Gas & grain composition
- Physical conditions in first and last zone
- Emission-line spectrum
- Mean quantities

Warnings, cautions, notes

- Cloudy is designed to be autonomous and self aware
- Generates notes, cautions, or warnings, if conditions are not appropriate.

reached. Iteration 1 of 1

Calculation stopped because MANNE Texture. Letter a state of the comparison of the c

Check end of output

Cloudy ends: 1 zone, 1 iteration, 4 cautions. (single thread) ExecTime(s) 8.80 [Stop in cdMain at ../maincl.cpp:517, Cloudy exited OK]

Break into 6 groups, do 6 radii • Radius -13 -15 -17 -19 -21 -23

	Luminosity case	Intensity case
Unit cell	\bigcirc	