Modelling of **C** IV absorption lines in BAL QSOs using CLOUDY <u>McD</u>

Sapna, Savithri, Aditi, Navpreet, Parveen, Ritesh, Vineet

Cloudy Workshop (21-26) Sept., 2015 (IUCAA, Pune)

> Special Thanks: Susmita Chakravorty Hum Chand Gary J. Ferland

BAL QSO : Broad Absorption Line QSOs

- BAL QSOs comprise about 3-10% of QSO population
- Shows strong blue-shifted broad absorption lines
- Strength of the BAL troughs change with time
- Outflows are signature of AD
- Outflow velocities 10-30k km s⁻¹
- Studies of BAL trough intensity and outflow velocity variability are rare

J091127+055054

→ Gravitationally lensed QSO
→ X-ray luminosity ~ 4 × 10⁴⁶ ergs s⁻¹
→ Z = 2.793, α(ox) = -1.58

Motivation

➢ Observed average deceleration for whole BAL profile ~ −2.0 ± 0.1 cm s⁻² over time-span of 2-3 years.
➢ Physical conditions, acceleration mechanisms, location of QSO outflows are poorly understood.
➢ Line variability helps probing the structure and dynamics of these out flowing gas.

"Cloudy" as a tool!

Spectra obtained from BOSS & SDSS data

Plot between log (U) and log (I.F.)

Value at which I.F. is maximum will be given as input for SED modelling.

Model SED for which CIII/CIV ratio best matches with the observed SED

Modelled spectra for log U = -0.5

Wavelength

Modelled spectra for log U = -1.0

Wavelength

Over plotted the spectra for log U = -0.5 , -1.0

Wavelength

 $\frac{Q(H)}{4\pi n_{H}r^{2}c}$

- **U** = Ionization parameter
- **R** = separation [cm] between the center of the source and illuminated face of the cloud.
- **n(H)** = total hydrogen density
- **c** = the speed of light
- **Q(H)** = number of hydrogen-ionizing photons

For two different U values which we calculated for the graph, variation in Q(H) can be deduced

RESULTS

Log U	N (CIV) (in log scale)
0	17.25 cm ⁻²
-0.5	18.22 cm ⁻²
-1	17.78 cm ⁻²

log U

Plot showing variation of

N (CIV) with Ionizing photon Temperature

Observed Results

- N1 (at 55896 MJD) = $2.92374 \times 10^{14} \text{ cm}^{-2}$
- N2 (at 52652 MJD) = $3.8307182 \times 10^{14} \text{ cm}^{-2}$
- (N1- N2) ~ 9.0692 X 10^{13} cm⁻²
- N1/N2 ~ 1.3102078

Calculated Results

N1 $(\log U = -1)/N2 (\log U = 0) = 1.8113$ (at same T)

WHAT COULD BE POSSIBLY DONE..??

To match modelled data with the observed data with possible accuracy

