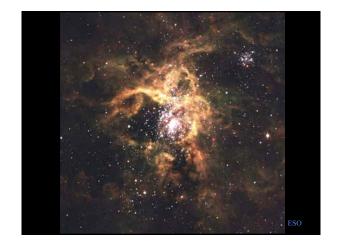

http://en.wikipedia.org/wiki/Interstellar_medium

Interstellar medium

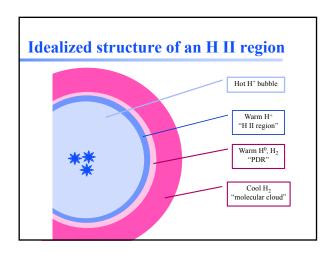
From Wikipedia, the free encyclopedia

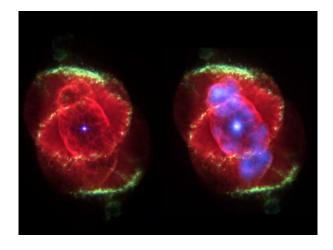
For other uses, see Interstellar (disambiguation).

In astronomy, the interstellar medium (or ISM) is the matter that exists in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, dust, and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation




Star forming H II regions


- Hot young stars very close to the molecular cloud that formed it
- Ionizing radiation and stellar winds strike nearby molecular cloud



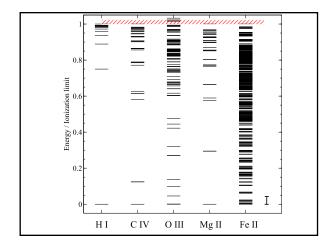
Three-phase pressure stability

tsuite / auto / ism_grid

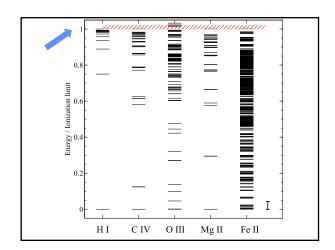
Heating – cooling balance

- Both heating and cooling depend on square of density
- ◆ So no density dependence
- Try it! compare temperatures at two densities

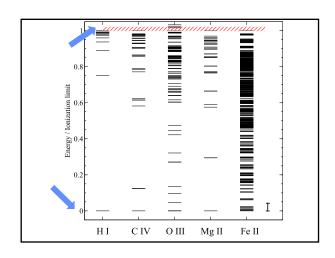
Vary Metals –temperature balance	
Then energy balancevaryZ	_
– vai yz	
	_
The same and a second A NI2 CO 5	
Thermostat effect AN3 S9.5	
 Vary metals with temperature balance varyZ.in 	
 Look at line ratios, temperature vs Z Cooling and heating vs Z 	
 Thermostat effect – line spectrum does not change dramatically when Z changes 	
Heating and cooling are equalCooling is mainly O III lines	
So they are constant when they are the main coolant	
	-
	1
Vary blackbody temperature	
Stoy or "energy balance" method of	
determining stellar temperatures • AGN3 Section 5.10	
• AGN3 Section 5.10	

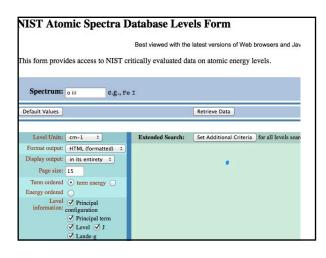

Three cases

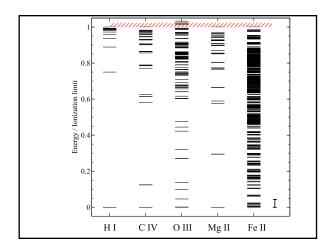
- HII.in set radiation field, properties of cloud determined self consistently
 - This is how we usually use Cloudy
- coronal.in no radiation, but gas kinetic temperature set by external physics. Ionization and emission set by gas kinetic temperature
- constant temperature models may include radiation but kinetic temperature set by external physics. Ionization determined by both radiation field and gas temperature
 - Hazy1 Chap 11

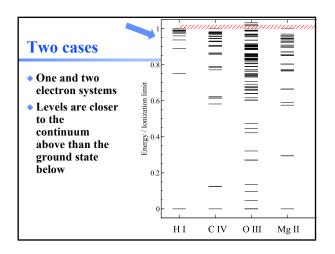

Vary blackbody temperature

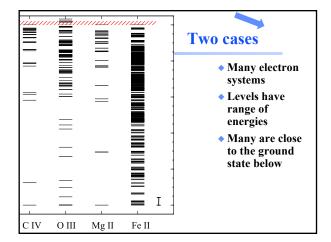
- Stoy or "energy balance" method of determining stellar temperatures
- ◆ AGN3 Section 5.10






Peter's atomic line list


- http://www.pa.uky.edu/~peter/atomic/
- http://www.pa.uky.edu/~peter/newpage/
 - Beta version with new features
- Search wavelength range to find what lines are present


* http://www.nist.gov/pml/data/asd.cfm Physical Measurement Loboralory Reversion Military & District Sector Secto

Conflormation	Town		Level	(O III)	
Configuration	Term	al .	(cm ⁻¹)	i	
2s ² 2p ²	3 _P	0	0	I I	
		1	113.178	λ4363	
		2	306.174	۸ ا	2321
$2s^22p^2$	¹D	2	20 273.27	1	
2s ² 2p ² 2s ² 2p ²	¹s	0	43 185.74	A5007	_
2s2p ³	5S°	2	60 324.79		
2s2p3	3D°	3	120 025.2	3.4959	-
LULP		2	120 053.4	2 +	
		1	120 058.2	1 + +	-

Two types of lines

- Recombination AGN3 sec 4.2
 - -e + p radiative recombination
 - Rate coefficient $q\sim10^{-13}$ cm³ s⁻¹
 - Mainly H, He
- Collisionally excited AGN3 3.5
 - Inelastic e + ion collision
 - $-q\sim10^{-9}$ cm³ s⁻¹
 - Heavy elements

Selection rules for transitions

- AGN3
- Appendix 4 Nebular quantum mechanics
- Appendix 6 Molecular quantum

2s ² 2p ²	A B I	-		Tour I	[O II	1)
2s ² 2p ²	Configuration	lerm	a l		i	
2 306.174 2s ² 2p ²	2s ² 2p ²	3 _P	0	0	I I	
2s ² 2p ²				113.178	λ4363	
2s2p³ 5°S° 2 60 324.79 14959 2s2p³ 3°D° 3 120 025.2			2	306.174	į	λ2321
2s2p ³	$2s^22p^2$	¹D	2	20 273.27	1	
2s2p ³	2s ² 2p ²	¹s	0	43 185.74	A5007	
2s2p ³	2s2p ³	5S°	2	60 324.79		
2s2p ³ 3D* 3 120 025.2					λ4959	1 -
	2s2p3	3D.		120 025.2		
2 120 053.4 2				120 053.4	2 1	

Species vs spectra

- ♦ H⁰, C³⁺, O²⁺, H₂, CO are baryons
- ◆ H I, C IV, O III, H₂, and CO are the spectra they emit / absorb
- O III is a permitted line produced by O²⁺, while [O III] is a forbidden line
- C III] is a semi-forbidden line, often an intercombination line

Species vs spectra

- H I Lyα emission can be produced by
 - Recombination of H+
 - Impact excitation of H^0
- H I absorption can only be produced by H⁰
- H I is not the same as H⁰
 - Ambiguous for emission lines

	_
Baryons and spectra	
zury one und speece	
Hazy 1 Section 2.5	-
• SpeciesLabels.txt in docs	
• Molecules are not ambiguous	-
-H2	
-CO	
- O2	
– H2+	-
-C2+	
 Their spectra have the same notation as the baryon 	-
22.,2	
	1
D I (
Baryons and spectra	
• Atomic spectra use number of spectra	
–H 1 –C 4	
◆ The baryon —"H"	
– '' – "He+"	
- "C+2"	
$-(C2+ is C_2^+ in our notation)$	
	1
	1
Lines in the main output	
•	
Print lines column	
Print lines sort wavelength	
• Print lines faint	

Finding lines in Cloudy

- A line is identified by a spectral label & wavelength
- docs/LineLabels.txt has label, wavelength, comment about line
 - Generated with command "Save line labels"
- Pick lines from this file

Air vs vacuum wavelengths

- The rule in atomic physics has been to use vacuum wavelengths for $\lambda < 2000 \mbox{\AA}$ and air for $\lambda > 2000 \mbox{\AA}$
- SDSS has used vacuum for all wavelengths
- ◆ Today's papers use a mix of both
- Vacuum is probably the future
- ◆ Print line vacuum
 - But you need to change your wavelengths

Some familiar lines

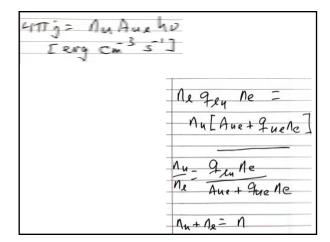
Species	λ(air)	λ(vacuum)
H 1	1215.67A	1215.67A
O 2	3726.03A	3727.09A
O 2	3728.81A	3729.88A
O. 3	4363.21A	4364.44A
H 1	4861.33A	4862.69A
O 3	5006.84A	5008.24A
H. 1	6562.81A	6564.62A

Other database reporting options

- See C17 review article, section 2
- Database print

Line blends

- Blnd 3727
- Blnd 2798
- ♦ Blnd 1549
- Two or more lines that appear as a single line in most spectra


Luminosity, relative intensity

- Intensity or luminosity of line
 - depending on case
- \bullet Intensity relative to normalization line, default $H\beta$
 - Change with normalize command

0	3	88.3323m	-5.577	1.5126
0	3	51.8004m	-5.106	4.4704
0	3	4931.23A	-8.339	0.0026
0	3	4958.91A	-4.876	7.5973
0	3	5006.84A	-4.401	22.6702
0	3	2320.95A	-7.193	0.0366
0	3	4363.21A	-6.593	0.1456
0	3	1660.81A	-7.187	0.0371
0	3	1666.15A	-6.720	0.1087

Two level atom AGN3 Sec 3.5

- Excitation, deexcitation rates
- Transition probabilities
- Critical density
- ◆ Two limits
 - Low densities, every excitation leads to emission of a photon
 - high densities, levels are n LTE, photon emission proportional to $n_{\rm u}$ $A_{\rm ul}$

	Critical density Aue = que Merit
LDL	Ne << non;+
HDL	Ne >> Acrit 477 = Ne 9 w Aueho

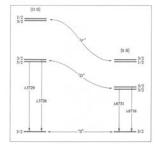
Ion	Level	$n_e (\text{cm}^{-3})$	Ion	Level	n_e (cm ⁻³)
CII	$^{2}P_{3/2}^{o}$	5.0×10^{1}	OIII	$^{1}D_{2}$	6.8×10^{5}
CIII	$^{3}P_{2}^{o}$ $^{1}D_{2}^{o}$	5.1×10^{5}	OIII	$^{3}P_{2}$	3.6×10^{3}
NII	$^{1}D_{2}^{-}$	6.6×10^{4}	OIII	${}^{3}P_{1}$	5.1×10^{2}
NII	$^{3}P_{2}$	3.1×10^{2}	Ne II	$^{2}P_{1/2}^{o}$	7.1×10^{5}
NII	${}^{3}P_{1}$	8.0×10^{1}	Ne III	$^{1}D_{2}$	9.5×10^{6}
NIII	$^{2}P_{3/2}^{o}$	1.5×10^{3}	Ne III	$^{3}P_{0}^{-}$	3.1×10^{4}
NIV	3 Po	1.1×10^{6}	Ne III	$^{3}P_{1}$	2.1×10^{5}
OII	$^{3}P_{2}^{o}$ $^{2}D_{3/2}^{o}$ $^{2}D_{2}^{o}$	1.5×10^{4}	Ne V	$^{1}D_{2}$	1.3×10^{7}
OII	$^{2}D_{5/2}^{o}$	3.4×10^{3}	Ne V	$^{3}P_{2}$	3.5×10^{4}
SII	$^{2}D_{3/2}^{o}$	5.4×10^{4}	Ne V	$^{3}P_{1}$	6.2×10^{3}
SII	$^{2}D_{5/2}^{o}$	1.6×10^{4}		0.020	

Vary density over extreme range

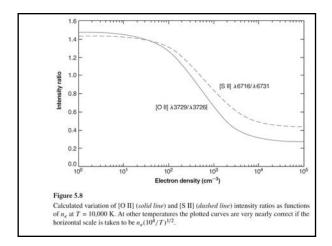
- Plot emissivity vs density over wide range to see how emissivity changes
- Recombination line, [O III] forbidden lines
- varyn.in

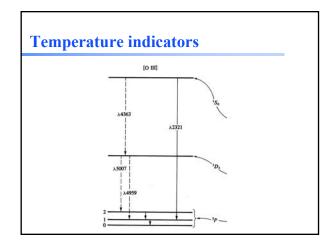
Recombination lines

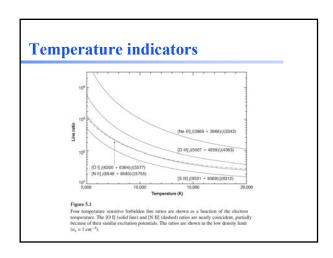
- $H^+ + e \rightarrow H^{0*} \rightarrow H^0 + photons$
- Critical densities of H I, He I, and He II optical lines are very high, n > 1e15 cm⁻³, so they are usually in LDL
- Emissivity goes as n^2 for $n < 10^{20}$ cm⁻³
- Case B predictions
- H I, He I, He II are the strongest in UV/ Opt/ IR
- ◆ Second row (C,N, O, Ne) & Fe in X-ray


Forbidden lines

- [O III]
- O^{++} + e → O^{++*} + e → O^{++} + e + photons - $n_e \cap O^{++} \cap q_{ul}$
- Critical densities of many forbidden lines $n \sim 1e3 1e5 \text{ cm}^{-3}$, so they can be in LDL or HDL
- Emissivity goes as n² or n


Compute spectrum of clouds with two very different densities


- ◆ Hden = 4
- ◆ Hden = 14
 - How will emission from these cloud compare?
 - How can we "trick" the model into having roughly the same emission?


Density indicators

AGN3 Fig 5.7

Radiative recombination edges

- Hrec3, hrec4.in in sims
- Hrec spreadsheet in sims
- Maybe do in x-rays instead? More common application

The ionization parameter

- U, the ratio of ionizing photon to hydrogen densities
- See <u>Davidson & Netzer</u> 1979

2.7 Photoionization of Heavy Elements

Finally, let us examine the ionization of the heavy elements, of which O, C, Ne, N, Si, and Fe, with abundances (by number) of order 10^{-3} to 10^{-4} that of H, are the most abundant. The ionization–equilibrium equation for any two successive stages of ionization l and l + 1 of any element X may be written

$$\kappa(X^{+i})\int_{v_i}^{\infty} \frac{4\pi J_e}{hv} a_{\nu}(X^{+i})d\nu = \kappa(X^{+i})\Gamma(X^{+i})$$

= $\kappa(X^{+i+1})\pi \alpha_{\nu}(X^{+i}, T)$. (2.3)

where $n(X^{+i})$ and $n(X^{+i+1})$ are the number densities of the two successive stages of ionization; $a_i(X^{k+i})$ is the photoionization cross section from the ground level of X^i

U and T(star) determine ionization

 No matter how intense the radiation field, how large the U, ions with ionization potentials higher than the highest energy in the SED cannot be produced