

Documentation

In docs directory in your download
Also on FTP site under "docs"

Cloudy QSG Chapter 1

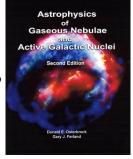
- Accurate simulation of physical processes at the atomic & molecular level
 - "universal fitting formulae" to atomic processes fail when used outside realm of validity, and are not used
- Assumptions:
 - energy is conserved
 - (usually) atomic processes have reached steady state
- Limits:
 - Kinetic temperature 2.7 K < T < 10¹⁰ K
 - No limits to density (low density limit, LTE, STE) for 1 and 2 electron atoms
 - Radiation field 30 m to 100 MeV

Simultaneous solution of

- Gas ionization
 - From ionization balance equations
- Chemistry

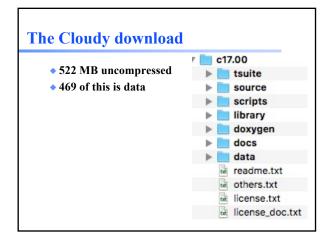
 Large network based on UMIST
- Gas kinetic temperature – Heating and cooling
- Level populations and emission
- Grain physics
 - Charging, CX, photoejection, quantum heating
- The observed spectrum
- Radiative transport

Cloudy is a microphysics code

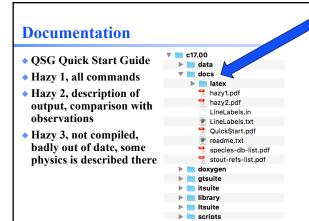

- Emphasis is on getting the atomic and molecular physics right
- If we get the microphysics right, the macrophysics will take care of itself
- Other codes have dynamics, shocks, 3D, as an emphasis, sometimes using Cloudy to get the microphysics

On the web

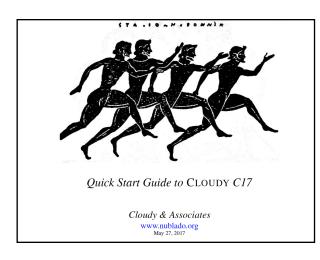
- Workshop <u>web site</u>
- Agenda for the workshop
 - Includes copies of presentations
- Participant interests
- ftp site with documentation, and examples

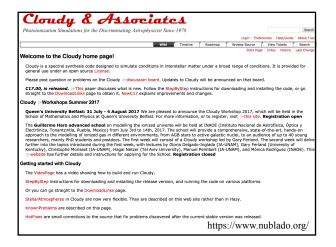

Osterbrock & Ferland Astrophysics of Gaseous Nebulae

- There are three versions, this is the 3rd
- Don called this on AGN3Any version is OK
- Any version is OK
- PDFs of some chapters are in the docs folder of the ftp site

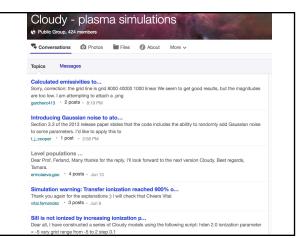



Cloudy version C17.01


- We set this up, ran a model, and created plots, as our homework last week
- The last three major Cloudy reviews are also in the docs folder of the ftp site

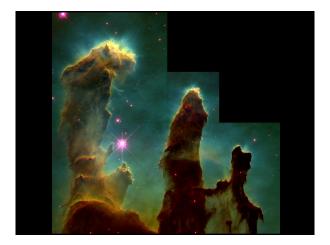


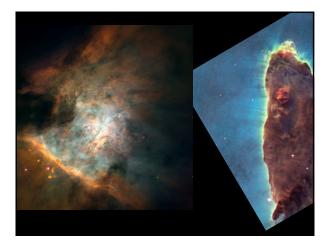




Running cloudy

- "run" file contains /Users/gary/cloudy/trunk/source/sys_llvm/cl oudy.exe -r_\$1 2> \$1.err
- If file "model.in" contains input, then
- run model &
- Produces output "model.out"
- The model will run in the "background" when the line ends with &


Runtime options

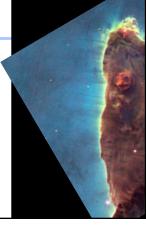

- Appear after cloudy.exe
- Described <u>here</u>
- ◆ -r
 - I use this in my workflow
 - Required for grids to work
 - Study the options and consider what is best for your workflow
- Cloudy.exe –h
 - Will show all options

The test suite scripts source suite auto • Fully tests the code after any changes "Monitors" allow automatic comparison of current with previous results Provides examples of how to use Cloudy But may include extraneous commands for testing - Or backwards compatible • Useful examples of how to set

up a simulation

►		auto
►		crash
►		experimental
►		mpi
▶		plots
►		programs
►		slow
	÷	clean_tsuite.pl
	-	mem-monitor
	*	ReadMe.txt
	÷	rerun_parallel.pl
	*	run_balanced.pl
	*	run_parallel.pl
	÷	run_service.pm
	*	RunServiceBal.pm
	*	sim_template.txt

Minimum to run Cloudy


- Hazy 1 Section 1.2
- Must specify
 - SED shape of the radiation field striking the cloud
 - -Flux of photons per unit area
 - Gas density

May also specify

- Gas composition, grains (grain-free solar composition by default)
- -Gas equation of state (often constant density)
- Stopping criterion, often lowest gas kinetic temperature or physical thickness

Let's model a ...

- Relatively dense, $n_{\rm H} = 10^4 \,{\rm cm}^{-3}$
- ISM cloud
- Ionized by an O6 star

Parameters – the SED shape

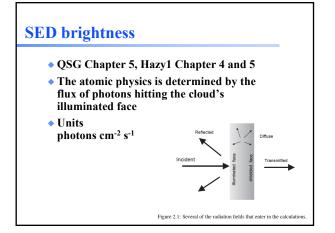
• Quick start guide Chapter 5, Hazy 1, Chapters 4, 6

cm²)

f (erg s

0.01

- Can be specified as a fundamental shape such as a blackbody
- Or by interpolation on a table of points
- Rydberg the ionization potential of hydrogen


Calculated	Strömgren	AGN3				
Spectral type	<i>T</i> _* (K)	M _V	log Q(H ⁰) (photons/s)	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$r_1 (pc)$ $n_e = n_p$ $= 1 cm^{-3}$
03 V	51,200	-5.78	49.87	49.18	6.26	122
04 V	48,700	-5.55	49.70	48.99	6.09	107
04.5 V	47,400	-5.44	49.61	48.90	6.00	100
05 V	46,100	-5.33	49.53	48.81	5.92	94
05.5 V	44,800	-5.22	49.43	48.72	5.82	87
06 V	43,600	-5.11	49.34	48.61	5.73	81
06.5 V	42,300	-4.99	49.23	48.49	5.62	75
07 V	41,000	-4.88	49.12	48.34	5.51	69
07.5 V	39,700	-4.77	49.00	48.16	5.39	63
08 V	38,400	-4.66	48.87	47.92	5.26	57
08.5 V	37,200	-4.55	48.72	47.63	5.11	51
09 V	35,900	-4.43	48.56	47.25	4.95	45
09.5 V	34,600	-4.32	48.38	46.77	4.77	39
B0 V	33,300	-4.21	48.16	46.23	4.55	33
B0.5 V	32,000	-4.10	47.90	45.69	4.29	27
O3 III	50,960	-6.09	49.99	49.30	6.38	134
B0.5 III	30,200	-5.31	48.27	45.86	4.66	36
O3 Ia	50,700	-6.4	50.11	49.41	6.50	147
O9.5 Ia	31,200	-6.5	49.17	47.17	5.56	71

Blackbody 4.36e4 K

Commands – Hazy1 Chap 3

- Free format keywords and numbers
- Commands end with empty line or *****
- Many numbers are logs, check Hazy1 carefully

SED brightness

- QSG Chapter 5, Hazy1 Chapter 4 and 5
- Luminosity case
 - Specify total photon luminosity
 - Predict line luminosities
- Intensity case
 - In a resolved source, often work with surface brightness, or line intensity
 - Specify flux of photons striking cloud, predict emission per unit area

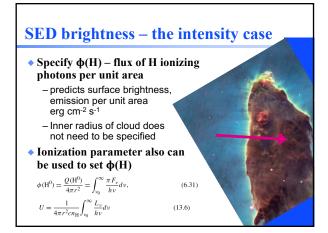
SED brightness – the luminosity case

Specify Q(H) – the number of ionizing photons

-AGN3 p18 $Q(H^0) = \int_{\nu_0}^{\infty} \frac{L_{\nu}}{h\nu} d\nu$

- Inner radius of cloud must be specified, since $\varphi \left(H \right) = Q(H) \, / \, 4\pi \; r^2$
- predicts emission line luminosities erg s⁻¹
- Luminosity, total or in H-ionizing radiation, can be set instead

Calculated	Strömgren	AGN3				
Spectral type	<i>T</i> _* (K)	M _V	log Q(H ⁰) (photons/s)	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$r_1 (pc)$ $n_e = n_p$ $= 1 cm^{-3}$
03 V	51,200	-5.78	49.87	49.18	6.26	122
04 V	48,700	-5.55	49.70	48.99	6.09	107
O4.5 V	47,400	-5.44	49.61	48.90	6.00	100
05 V	46,100	-5.33	49.53	48.81	5.92	94
O5.5 V	44,800	-5.22	49.43	48.72	5.82	87
06 V	43,600	-5.11	49.34	48.61	5.73	81
06.5 V	42,300	-4.99	49.23	48.49	5.62	75
07 V	41,000	-4.88	49.12	48.34	5.51	69
07.5 V	39,700	-4.77	49.00	48.16	5.39	63
08 V	38,400	-4.66	48.87	47.92	5.26	57
08.5 V	37,200	-4.55	48.72	47.63	5.11	51
09 V	35,900	-4.43	48.56	47.25	4.95	45
09.5 V	34,600	-4.32	48.38	46.77	4.77	39
B0 V	33,300	-4.21	48.16	46.23	4.55	33
B0.5 V	32,000	-4.10	47.90	45.69	4.29	27
O3 III	50,960	-6.09	49.99	49.30	6.38	134
B0.5 III	30,200	-5.31	48.27	45.86	4.66	36
O3 Ia	50,700	-6.4	50.11	49.41	6.50	147
O9.5 Ia	31,200	-6.5	49.17	47.17	5.56	71



- Blackbody 4.36e4 K
- Q(H) 49.34

Radius command, Chap 9.10

- If luminosity is set then the radius, the separation between the star and the illuminated face of the cloud, must also be specified
- Radius command
 - log radius in cm by default
 - Linear, or parsecs, can be used by setting optional keywords
- Let's put our cloud 10¹⁶ cm from the star

- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- We will try different radii later

Ionization parameter • Dimensionless ratio of ionizing photon to hydrogen densities $U = \frac{1}{4\pi r^2 c n_{\rm H}} \int_{\nu_0}^{\infty} \frac{L_{\nu}}{h\nu} d\nu = \frac{Q ({\rm H}^0)}{4\pi r^2 c n_{\rm H}},$ (14.7)

$$n(X^{+i}) \int_{\nu_i}^{\infty} \frac{4\pi J_{\nu}}{h\nu} a_{\nu}(X^{+i}) d\nu = n(X^{+i}) \Gamma(X^{+i})$$

= $n(X^{+i+1}) n_e \alpha_G(X^{+i}, T),$ (2.30)

Xi – an X-ray ionization parameter

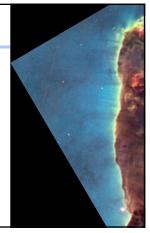
Hazy 1

5.16 xi -0.1

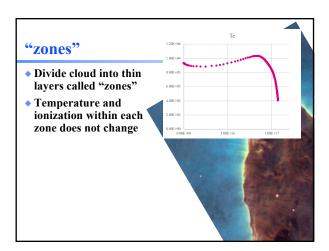
Tarter et al. (1969); Krolik et al. (1981); Kallman and Bautista (2001) define an ionization parameter ξ given by

$$\xi = (4\pi)^2 \int_{1R}^{1000R} J_V d\nu / n(\mathrm{H}) \approx \frac{L_{ion}}{n(\mathrm{H})r^2} [\mathrm{erg \ cm \ s^{-1}}]$$

(5.12)


Cloud density, Hazy 1 Chap 8

- "hden" command, Chapt 8.8, sets log of total hydrogen density, cm⁻³
- Constant density by default – the H density is the same across the cloud
- Other equations of state possible


 Constant pressure, dynamical flows, power-laws

Let's model a ...

- Relatively dense, $n_{\rm H} = 10^4 \, {\rm cm}^{-3}$
- ISM cloud
- Ionized by an O6 star

- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- Hden 4

A "unit cell"

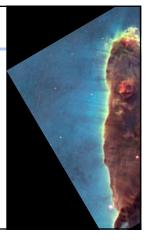
- We will sometimes model a cubic cm of matter
- Lots faster 7 simpler
- ◆ A "unit cell", 1 cm³
- These commands do a single "zone" that is log(dr)=0 (or 1 cm) thick

- stop zone 1

- set dr 0

Command deck so far

- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- Hden 4
- stop zone 1
- set dr 0


Composition, Hazy 1 Chap 7

- Solar, no grains, by default
- Other standard mixtures possible,
- Stored in data / abundances
- The composition used is reported at the top of the main output

H : 0.0000 He: -1.0223 Li:-10.257 B :-10.696 C : -3.2529 N : -4.154 0 : -3.3979 He: -4.2218 Na: -6.5229 Ng: -5.5223 Al: -6.696 Si: -5.3799 P : -6.789 S : -5.6000 C : -7.000 Ar: -5.522 K : -7.936 C : -7.6990 Ti: -9.236 V : -0.000 C : -3.0000 Hm : -7.033 E : -5.220 Hi : -7.000 C : -8.000 C : -8.000 Grain Chemical Composition C : -3.029 0 : -3.0526 M9: -4.5547 F : -4.5547 F : -4.5547

Let's model a ...

- Relatively dense, $n_{\rm H} = 10^4 \, {\rm cm}^{-3}$
- ISM cloud
- Ionized by an O6 star
- The ISM is dusty, and some elements are depleted by condensation onto dust
- Abundances ISM
 Chapt 7.4.3

Command deck so far

- Blackbody 4.36e4 K
- Q(H) 49.34
- Radius 16
- Hden 4
- stop zone 1
- set dr 0
- Abundances ISM

Background cosmic rays

- Interstellar chemistry requires a source of ionization to work
- To get over "activation barrier" in reactions
- The chemistry network will fail in unphysical ways if ionization is not present
- Galactic background cosmic rays provide this ionization in nature
- Cosmic rays background, Chapt 11.6.1

Command deck so far

- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- Hden 4
- stop zone 1
- set dr 0
- Abundances ISM
- Cosmic rays background

"Save" output

- Requested with various "save" commands
 Hazy 1 Section 16.35 and later
- This is the main way I extract results
- Keyword to specify what to save
- Filename to set where to save it
- Set save prefix "name"
 Prepends "name" to all save files

A note on quotation marks

- Office products will put "smart quotes" in our examples
- ◆ C++ requires straight quotes.

set path "example"
save overview ".ovr"

Save files

- Save emitted continuum "filename"
 - Photon energy is Rydberg by default
 - Change to microns with keyword units
 - Units microns
- Save overview
 - Useful information such as gas temperature and ionization
- Save element *name*
 - Saves ionization of element specified

Command deck so far

- Set save prefix "HII"
- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- Hden 4
- stop zone 1
- -set dr 0
- Abundances ISM
- Cosmic rays background
- Save overview ".ovr" last no hash
- Save element hydrogen ".hyd" last no hashSave emitted continuum ".econ" units microns

The "main output"

- The *.out file created when code is executed -QSG 7.1 & Hazy 2 Chapter 1
- Gas & grain composition
- Physical conditions in first and last zone
- Emission-line spectrum
- Mean quantities

Warnings, cautions, notes

- Cloudy is designed to be autonomous and self aware
- Generates notes, cautions, or warnings, if conditions are not appropriate.

Calculation stopped because MZOME reached. Iteration 1 of 1 The geneerry is plane-parallel. -Continuum zero at some energies. -The H Lynam continuum 1s thin, and I assumed that it was thick. Use the ITERATE command to do more iterations. The M Lynam continuum 1s thin and I assumed that the shick use the ITERATE command to do more iterations. The M Lynam continuum 1s thin and I assumed that the shick use the ITERATE command to do more iterations. The M Lynam continuum 1s thin and I assumed that the shick use the ITERATE command to do more iterations. Destruction of the ZTEIS reached 32.8% of the total Med dest rate at zone 1, 32.8% of that was photoionization. MGC: (Loud age was not set. Longest linescale was 5.46#08 s 1.77ked) years. IGRain photoelectric heating is VMY important. The CM was not included. This is added with the CME command.

Check end of output

Cloudy ends: 1 zone, 1 iteration, 4 cautions. (single thread) ExecTime(s) 8.80 [Stop in cdMain at ../maincl.cpp:517, Cloudy exited OK]

Break into 6 groups, do 6 radii

- Radius. (log, cm)
 - 13 – 15
 - 17
 - 19
 - -21
 - -23