How to make sense of all these lines

Isobaric (constant pressure) non-equilibrium cooling from 1keV, solar abundances

Peter's atomic line list

- http://www.pa.uky.edu/~peter/atomic/
- http://www.pa.uky.edu/~peter/newpage/
 - Beta version with new features
- Search wavelength range to find what lines are present

http://www.nist.gov/pml/data/asd.cfm

Version 4

Welcome to the NIST Atomic Spectra Database, NIST Standard Reference Database #78. The spectroscopic data may be selected and displayed according to wavelengths or energy levels by choosing one of the following options:

Spectral lines and associated energy levels displayed in wavelength order with all selected spectra intermixed or in multiplet order. Transition probabilities for the lines are also displayed where available.

Energy levels of a particular atom or ion displayed in order of energy above the ground state.

© minifilm7/2010 Shutterstock.com

NIST ASD Team

Principal Developers (Currently Active): Yu. Ralchenko, A. Kramida, and J. Reader

NIST Atomic Spectra Database Levels Form

Best viewed with the latest versions of Web browsers and Jav

This form provides access to NIST critically evaluated data on atomic energy levels.

Spectrum:	o iii	C.g., Fe I	
Default Values	1. 1.		Retrieve Data

Level Units: cm-1 +	Extended Search:	Set Additional Criteria for all levels sear
Format output: HTML (formatted) +		
Display output: in its entirety +		
Page size: 15		
Term ordered 💿 term energy 🗌		
Energy ordered 🔘		
Level I Principal information: configuration I Principal term I Level I J Lande-g		

O III

Two types of lines

Recombination AGN3 sec 4.2

- e + p radiative recombination
- Rate coefficient q~10⁻¹³ cm³ s⁻¹
- Mainly H, He

Collisionally excited AGN3 3.5

- Inelastic e + ion collision
- $-q \sim 10^{-9} \text{ cm}^3 \text{ s}^{-1}$
- Heavy elements

Selection rules for transitions

◆ AGN3

Appendix 4 Nebular quantum mechanics

Appendix 6 Molecular quantum

O III

Species vs spectra

◆ H⁰, C³⁺, O²⁺, H₂, CO are baryons

- H I, C IV, O III, H₂, and CO are the spectra they emit / absorb
- O III is a permitted line produced by O²⁺, while [O III] is a forbidden line
- C III] is a semi-forbidden line, often an intercombination line

Species vs spectra

◆ H I Lyα *emission* can be produced by

- Recombination of H⁺
- Impact excitation of H⁰
- ◆ H I absorption can only be produced by H⁰
- ◆ H I is not the same as H⁰
 - Ambiguous for emission lines

Lines in the main output

Print lines column

Print lines sort wavelength

Print lines faint

Finding lines in Cloudy

- Run smoke test with command
- Save line labels
- Spectral label, wavelength, identifies a line
- Save output file has label, wavelength, comment about line
- Pick lines from this save file

Line blends

Blnd 3727
Blnd 2798
Blnd 1549

 Two or more lines that appear as a single line in most spectra

Luminosity, relative intensity

Intensity or luminosity of line

-depending on case

Intensity relative to normalization line, default Hβ

 Change with normalize command

0	3 88.3323m	-5.577	1.5126
0	3 51.8004m	-5.106	4.4704
0	3 4931.23A	-8.339	0.0026
0	3 4958.91A	-4.876	7.5973
0	3 5006.84A	-4.401	22.6702
0	3 2320.95A	-7.193	0.0366
0	3 4363.21A	-6.593	0.1456
0	3 1660.81A	-7.187	0.0371
0	3 1666.15A	-6.720	0.1087
-	1 10 5050		

Why use the laser at all

- Cloudy has lots of lines and does many levels for many ions
- A single zone (which we do for speed) is optically thin
- So continuum fluorescent excitation can be important.
- But would not happen with a finite column density
- Show fig with energy levels for H, C IV etc and say continuum photons would excite to all upper levels

Two level atom AGN3 Sec 3.5

- Excitation, deexcitation rates
- Transition probabilities
- Critical density
- Two limits
 - Low densities, every excitation leads to emission of a photon
 - high densities, levels are n LTE, photon emission proportional to n_u A_{ul}

41TT j= Au Aue hu Errg cm 51]

lle gen ne Au [Aue+quele] Flulle que le

critical dencity Aug = gue Acrit

Ne << norit 4mg= Ae Aequ hv Ne >> Acrit 4pj= Ne fur Aneho

Why we set the ionization

- If most O were O3+ the process
- ◆ O3+ + e -> O2+ + hn
- Would be fast, and would make O III recombination lines
- This can happen in nature, but it would confuse our homework problem

Emissivity vs density, temperature

Recombination line, O III forbidden lines

Vary density over extreme range

 Plot emissivity vs density over wide range to see how emissivity changes

Recombination lines

- ♦ $H^+ + e \rightarrow H^{0*} \rightarrow H^0 + photons$
- Critical densities of H I, He I, and He II optical lines are very high, n > 1e15 cm⁻³, so they are usually in LDL
- ◆ Emissivity goes as n² for n < 10²⁰ cm⁻³
- Case B predictions
- H I, He I, He II are the strongest in UV/ Opt/ IR
 Second row (C,N, O, Ne) & Fe in X-ray

Forbidden lines

• [O III]

• $O^{++} + e \rightarrow O^{++*} \rightarrow O^{++} + photons$

- Critical densities of many forbidden lines n ~ 1e3 cm⁻³, so they can be in LDL or HDH
- Emissivity goes as n² or n

Compute spectrum of clouds with two very different densities

Density indicators

AGN3 Fig 5.7

Temperature indicators

 Lines from same species which have different excitation potentials

Inward vs total emission

"Inwd" label for line

Inward/outward emission computed on second and later iterations

- Iterate to convergence
- Print last

Line to continuum contrast

◆ Hazy 1, sec 16.43.2, 19.14.44

- Line to continuum contrast in save continuum

Databases in Cloudy

- Stout (atoms & low ionization)
- Chianti (higher ionization)
- LAMDA (heavy-element molecules)

H₂ (Shaw+05) "species H2"

Controlling model atoms

Series of SPECIES XXX commands

Compare exec time species limit vs small

Cloudy workshop