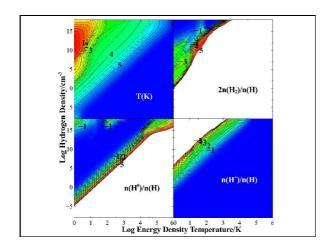
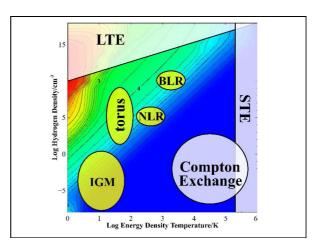


Cloudy

- Accurate simulation of physical processes at the atomic & molecular level
 - "universal fitting formulae" to atomic processes fail when used outside realm of validity, and are not used
- Assumptions:
 - energy is conserved
 - -(usually) atomic processes have reached steady state
- Limits
 - Kinetic temperature 2.7 K < T < 10^{10} K
 - No limits to density (low density limit, LTE, STE)
 - Radiation field 10 m to 100 MeV

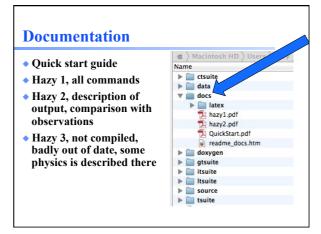
Simultaneous solution of

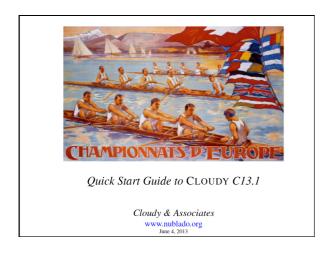

- Gas ionization
 - From ionization balance equations
- Chemistry
 - -Large network based on UMIST
- Gas kinetic temperature
 - Heating and cooling
- Grain physics
 - Charging, CX, photoejection, quantum heating
- The observed spectrum
 - Radiative transport

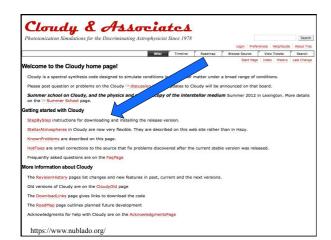

Cloudy and its physics

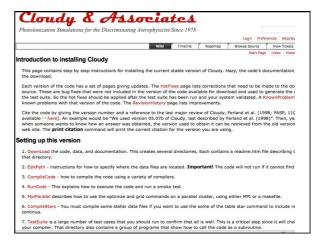
- Osterbrock & Ferland 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd edition (AGN3)
- Ferland+2013, Rev Mex 49, 137, The 2013 Release of Cloudy
- Ferland 2003, ARA&A, 41, 517, Quantitative Spectroscopy of Photoionized Clouds

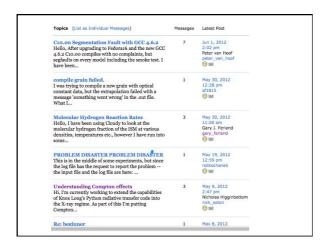
Some applications to astronomy

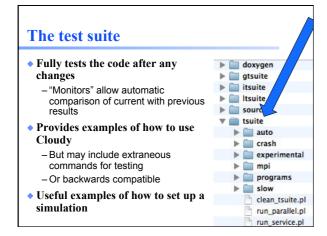

- Hamann & Ferland, ARA&A, 37, 487, Elemental Abundances in Quasistellar Objects: Star Formation and Galactic Nuclear Evolution at High Redshifts
- Ferland 2001, PASP, 113, 41, Physical Conditions in the Orion H II Region
- ◆ And the ~200 papers that cite its documentation each year




Open source since 1978


- All versions, all data, on svn at nublado.org
- You are most welcome to help!





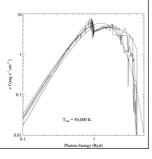
Running cloudy

- "run" file contains path-to-cloudy.exe -r \$
- If file "model.in" contains input, then
- run model &
- Produces output "model.out"

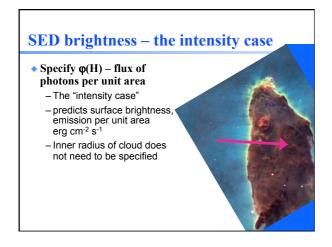
The "main output"

- The *.out file created when code is executed
 QSG 7.1 & Hazy 2 Chapter 1
- Gas & grain composition
- Physical conditions in first and last zone
- Emission-line spectrum
- Mean quantities
- Cloudy is designed to be autonomous and self aware
- Will generate notes, cautions, or warnings, is conditions are not appropriate.

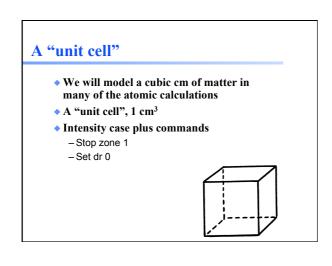
"Save" output

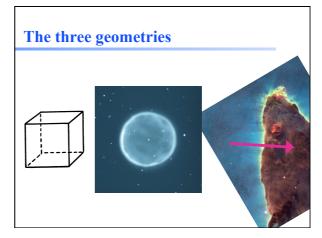

- Requested with various "save" commands
 Hazy 1 Section16.35 and later
- The main way the code reports its results

Minimum to run Cloudy

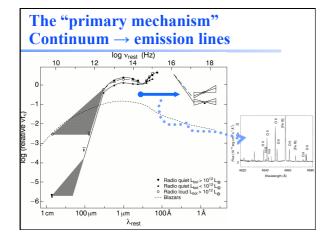

- **◆** Must specify
 - SED shape of the radiation field
 - Flux of photons per unit area
 - Gas density
- May specify
 - Gas composition, grains (grain-free solar by default)
 - Gas equation of state (often constant density)
 - Stopping criterion, often physical thickness

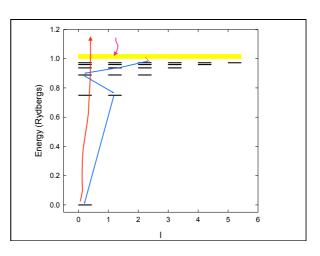
Parameters – the SED shape

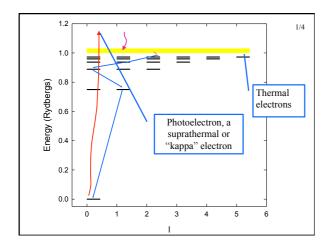

- Quick start guide Chapter 5
- ♦ Hazy 1, Chapters 4, 6
- Can be specified as a fundamental shape such as a blackbody
- Generally entered as table of points

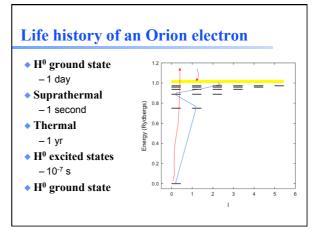


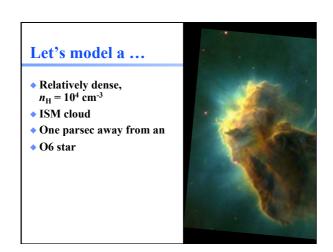
SED brightness – the luminosity case • Specify Q (H) – photon luminosity - Inner radius of cloud must be specified, since $\varphi(H) = Q(H) / 4\pi r^2$ - predicts emission line luminosities erg s⁻¹

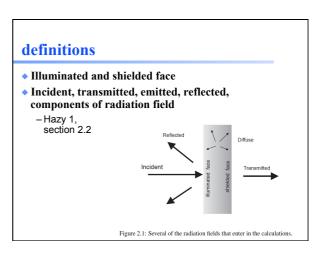


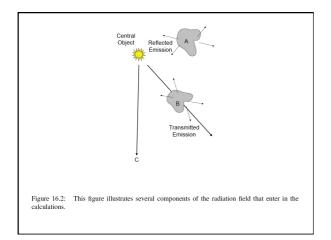

Cloud density, Hazy 1 Chap 8

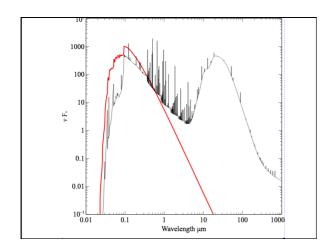

- "hden" command set H density cm-3
- Constant density by default
 - the H density is the same across the cloud
- Other equations of state possible
 - Constant pressure, flows, power-laws


Composition, Hazy 1 Chap 7


- Solar, no grains, by default
- Other standard mixtures possible,
- Stored in data / abundances







Photoionization

- Highest cross section at lowest photon energies
- ◆ AGN3 Fig 2.2

Make plot of total opacity for zone 1 of H II region

Recombination AGN3

- Electron and ion recombine, emitting energy
- Radiative recombination for H and He
- Dielectronic recombination for heavy element
- Print arrays command (a debugging tool) will report recombination rates (s⁻¹)

Strömgren length

 Number of ionizing photons entering layer is balance by number of recombinations along it

$$L \propto \frac{\varphi(H)}{\Lambda e \Omega_0 Q}$$

Matter vs radiation bounded

Beyond the H⁺ layer

- Little H⁺ ionizing radiation gets past the H⁺ layer
- Deeper regions are atomic or molecular
- Also cold and produce little visible light
- ◆ Large extinction due to dust

Why did the simulation stop?

- ◆ Make plot of H⁺ fraction vs depth
- Various stopping reasons given in Hazy 2, Sec 7.6
- \bullet Default is to stop when gas temperature falls below 4000 K, probably a region near the H^+ H^0 ionization front.
 - But is this what you want?

Definitions

- Ionization fractions
 - Fraction of an element in that ionization state
- Kirchoff's laws of spectroscopy
 - Hot transparent gas makes emission lines
 - Cool gas in front of continuum source make absorption lines
 - Warm optically thick makes continuum, perhaps blackbody
- Luminosity
 - Energy emitted per second

Definitions

- Emissivisity 4πj
 - Emission per unit volume, per second
- Optical depth T
 - Number of mean free paths through a medium
- Opacity κ
 - $-\tau = \kappa n$
- Planck function $B = j/\kappa$
- Rob Rutten's course notes describes this and more
 - http://www.staff.science.uu.nl/~rutte101/ Radiative Transfer.html